mutans specific products Specifically, quantification of the res

mutans specific products. Specifically, quantification of the respective genes in mixed RNA samples yielded results

that were proportional to the amount of S. mutans RNA used in the reactions (data not shown). Similar results were also obtained with genomic DNA from the respective strains as templates (data not shown). The choice of appropriate controls for this study was carefully considered. Ribosomal RNA is the most commonly used reference in single species transcriptional analysis, and has often been used as a control in SC79 cell line Northern analysis of S. mutans RNA [18, 30]. However, use of ribosomal RNAs could be misleading when it is used for analysis of gene expression in mixed-species biofilms, especially when closely related species are present in the consortium. selleck Specifically, during calibration of the methods, cross-reactions between rRNA of different bacterial sources were noted, as shown by multiple peaks in the melting curves in the RealTime-PCR reactions (data not shown). Therefore, rather than use rRNA total viable counts (CFU) were used to normalize the RealTime-PCR data. Brief sonication was used to disperse the biofilms. When plated on

ACY-738 BHI agar plates, the distinctive colony morphology of S. mutans (flat, opaque, dry colonies with rough surface) versus S. oralis (small, flat and smooth colonies), S. sanguinis and L. casei (both forming small, wet, convex colonies with shiny and smooth surfaces) made it easy to distinguish S. mutans from the other streptococci and L. casei. For S. mutans-L. casei dual-species biofilms, an erythromycin resistant L. casei strain (Browngardt and Burne, unpublished data) was also used in dual-species biofilms, and BHI agar plates containing erythromycin (5 μg ml-1) were used for viable counts of L. casei. The results were similar to those when BHI agar plates were used (data not shown). The

lactate dehydrogenase gene ldh of S. mutans has been reported to be constitutively expressed [31] (Wen and Burne, unpublished data), so we also examined whether this gene may serve as a suitable reference. No cross-reactions were detected between primers of S. GPX6 mutans ldh and genes of other bacteria (data not shown). As expected, no significant difference in expression of ldh was observed between S. mutans grown in mono-species biofilms and those in dual-species biofilms, following proper normalization to CFU (Figure 1). Similar results were obtained when random primers were used to generate cDNA template instead of ldh-specific primers. These results add additional support to the finding that RealTime-PCR with normalization to CFU is a reliable approach for assessment of gene regulation in S. mutans growing in this mixed-species biofilm model. Figure 1 RealTime-PCR analysis of ldh gene as an internal control. Data presented here were generated from at least four separate sets of biofilm cultures and RealTime-PCR was carried out in triplicate and was repeated at least once.

Nature 2004, 427:72–74 PubMedCrossRef 19 Klockgether J, Wurdeman

Nature 2004, 427:72–74.PubMedCrossRef 19. Klockgether J, Wurdemann D, Wiehlmann L, Tummler B: Transcript profiling of the Pseudomonas aeruginosa genomic islands PAGI-2 and pKLC102. Microbiology 2008, 154:1599–1604.PubMedCrossRef 20. Gaillard M, Vallaeys T, Vorholter FJ, Minoia M, Werlen C, Sentchilo V, Puhler A, Meer JR: The

clc element of Pseudomonas sp. selleck compound strain B13, a genomic island with various catabolic properties. J Bacteriol 2006, 188:1999–2013.PubMedCrossRef 21. Ravatn R, Studer S, Springael D, Zehnder AJB, Meer JR: Chromosomal integration, tandem amplification, and mTOR inhibitor deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J Bacteriol 1998, 180:4360–4369.PubMed CP673451 supplier 22. Ravatn R, Studer S, Zehnder AJB, Meer JR: Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family,

is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J Bacteriol 1998, 180:5505–5514.PubMed 23. Sentchilo V, Czechowska K, Pradervand N, Minoia M, Miyazaki R, Meer JR: Intracellular excision and reintegration dynamics of the ICE clc genomic island of Pseudomonas knackmussii sp. strain B13. Mol Microbiol 2009, 72:1293–1306.PubMedCrossRef 24. Mohd-Zain Z, Turner SL, Cerdeño-Tárraga AM, Lilley AK, Inzana TJ, Duncan AJ, Harding RM, Hood DW, Peto TE, Crook DW: Transferable antibiotic resistance elements in Haemophilus influenzae share a common evolutionary origin with a diverse family of syntenic genomic islands. J Bacteriol 2004, 186:8114–8122.PubMedCrossRef 25. Sentchilo VS, Staurosporine nmr Zehnder AJB, Meer JR: Characterization of two alternative promoters and a transcription regulator for integrase expression in the clc catabolic

genomic island of Pseudomonas sp. strain B13. Mol Microbiol 2003, 49:93–104.PubMedCrossRef 26. Minoia M, Gaillard M, Reinhard F, Stojanov M, Sentchilo V, Meer JR: Stochasticity and bistability in horizontal transfer control of a genomic island in Pseudomonas . Proc Natl Acad Sci USA 2008, 105:20792–20797.PubMedCrossRef 27. Sentchilo VS, Ravatn R, Werlen C, Zehnder AJB, Meer JR: Unusual integrase gene expression on the clc genomic island of Pseudomonas sp. strain B13. J Bacteriol 2003, 185:4530–4538.PubMedCrossRef 28. Guell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S, Rode M, Suyama M, Schmidt S, Gavin AC, Bork P, Serrano L: Transcriptome complexity in a genome-reduced bacterium. Science 2009, 326:1268–1271.PubMedCrossRef 29. Miyakoshi M, Nishida H, Shintani M, Yamane H, Nojiri H: High-resolution mapping of plasmid transcriptomes in different host bacteria. BMC Genomics 2009, 10:12.PubMedCrossRef 30. Alonso S, Bartolome-Martín D, del Alamo M, Diaz E, Garcia JL, Pérera J: Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2.

J Immunol

J Immunol GSK872 research buy 164:4558–4563PubMed 18. Escher G, Hoang A, Georges S, Tchoua U, El-Osta A, Krozowski Z, Sviridov D (2005) Demethylation using the epigenetic modifier, 5-azacytidine, increases the efficiency of transient transfection of macrophages. J Lipid Res 46:356–365CrossRefPubMed 19. Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166:5398–5406PubMed 20. Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996)

Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci U S A 93:13119–13124CrossRefPubMed 21. Kirk CJ, Hartigan-O’Connor D, Nickoloff BJ, Chamberlain GSK126 clinical trial JS, Giedlin M, Aukerman L, Mule JJ (2001) T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 61:2062–2070PubMed 22. Nomura T, Hasegawa H, Kohno M, Sasaki M, Fujita S (2001) Enhancement of anti-tumor immunity by tumor cells transfected with the secondary lymphoid tissue chemokine EBI-1-ligand chemokine and stromal cell-derived factor-1alpha chemokine genes. Int

J Cancer 91:597–606CrossRefPubMed 23. Sharma S, Stolina M, Zhu L, Lin Y, Batra R, Huang M, Strieter R, Dubinett SM (2001) Secondary lymphoid organ chemokine reduces pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 1:6406–6412 24. den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696CrossRef 25. Soto H, Wang W, Strieter RM, Copeland NG, Gilbert DJ, Jenkins NA, Hedrick J, Zlotnik A (1998) The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3.

Proc Natl Acad Sci U S A 95:8205–8210CrossRefPubMed 26. Kanegane C, Sgadari C, Kanegane H, Teruya-Feldstein J, Yao L, Gupta G, Farber JM, Liao F, Liu L, Tosato G (1998) Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J Leukoc Biol Cobimetinib purchase 64:384–392PubMed 27. Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, Uguccioni M, Galli G, Cosmi L, Maurenzig L, Baggiolini M, Maggi E, Romagnani S, Serio M (2001) Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells Angiogenesis inhibitor mediates angiostatic activity. J Clin Invest 53–63 28. Arenberg DA, Zlotnick A, Strom SR, Burdick MD, Strieter RM (2001) The murine CC chemokine, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunol Immunother 49:587–592CrossRefPubMed 29. Koizumi K, Kozawa Y, Ohashi Y, Nakamura ES, Aozuka Y, Sakurai H, Ichiki K, Doki Y, Misaki T, Saiki I (2007) CCL21 promotes the migration and adhesion of highly lymph node metastatic human non-small cell lung cancer Lu-99 in vitro. Oncol Rep 17:1511–1516PubMed 30.

In the past, Cephalosporins have often been used in the treatment

In the past, Cephalosporins have often been used in the treatment of intra-abdominal infections. Among third generation cephalosporins, subgroups with both limited and strong activity against Pseudomonas aeruginosa (cefepime and ceftazidime) have been used in conjunction with metronidazole to treat IAIs. Enterobacteriaceae can have acquired resistance to both cephalosporins, while such resistance is intrinsic in Enterococci [221–223]. In light of the increasing prevalence of ESBL-producing enterobacteriaceae due to selection pressures related to overuse https://www.selleckchem.com/products/VX-680(MK-0457).html of cephalosporins, routine use of these antibiotics is strongly discouraged. Aztreonam is a parenteral synthetic

beta-lactam antibiotic and the first monobactam marketed for clinical use. The drug exhibits potent in vitro activity against a wide spectrum of gram-negative aerobic pathogens (including Pseudomonas aeruginosa), but its routine use is discouraged due to selection pressures favoring resistant strains, and it

therefore shares the same constraints associated with cephalosporin use. Carbapenems offer a wide spectrum of antimicrobial activity against gram-positive and gram-negative aerobic and anaerobic pathogens (with the exception of MDR resistant gram-positive cocci). For more than 2 decades, carbapenems have been considered the agents of “last resort” for multidrug-resistant infections caused by Enterobacteriaceae. check details In the last decade, increased carbapenem consumption has been associated with an increased emergence of carbapenem resistance among Enterobacteriacea, particularly in Klebsiella

pneumoniae. The STAT inhibitor recent and rapid spread of serine carbapenemases in Klebsiella pneumoniae (known as Klebsiella oxyclozanide pneumoniae carbapenemases or KPCs) has become an issue of crucial importantance in hospitals worldwide [224]. Group 1 carbapenems include ertapenem, a once-a-day carbapenem that shares the activity of imipenem and meropenem against most species, including extended-spectrum beta-lactamase (ESBL)-producing pathogens, but is not active against Pseudomonas and Enterococcus species [225, 226]. Group 2 includes imipenem/cilastatin, meropenem, and doripenem, which share activity against non-fermentative gram-negative bacilli. Researchers have reported doripenem’s slightly elevated in vitro activity against certain Pseudomonas strains in registrative trials [227]. Further, given their excellent tissue penetration and strong activity against aerobic gram-negative bacteria, fluoroquinolones have been widely used in recent years for treatment of IAIs. It should also be noted that all fluoroquinolones are rapidly and almost completely absorbed from the gastrointestinal tract. A combination of ciprofloxacin/metronidazole has been perhaps the most commonly used regimen for complicated IAIs in recent years. The latest quinolone, Moxifloxacin, has demonstrated to be active against a wide range of aerobic gram-positive and gram-negative species [228].

Too Early to Tell α-ketoglutarate (α-KG) α-KG is

Too Early to Tell α-ketoglutarate (α-KG) α-KG is this website an intermediate in the Krebs cycle that is involved in aerobic energy metabolism. There is some clinical evidence that α-KG may serve as an anticatabolic nutrient after surgery [130, 131]. However, it is unclear whether α-KG supplementation during training may affect

training adaptations. α-Ketoisocaproate (KIC) KIC is a branched-chain keto acid that is a metabolite of leucine metabolism. In a similar manner as HMB, leucine and metabolites of leucine are believed to possess anticatabolic properties [132]. There is some clinical evidence that KIC may spare protein degradation in clinical populations [133, 134]. Theoretically, KIC may help minimize protein degradation during training possibly leading to greater training adaptations. However, we are not aware of any studies that have evaluated the effects of KIC supplementation during training on body composition. Ecdysterones Ecdysterones (also known as ectysterone, 20 Beta-Hydroxyecdysterone, turkesterone, ponasterone, find more ecdysone, or ecdystene) are naturally derived check details phytoecdysteroids (i.e., insect hormones). They are typically extracted from the herbs Leuza rhaptonticum sp., Rhaponticum carthamoides, or Cyanotis vaga. They can also be found in high concentrations in the herb Suma (also known as Brazilian Ginseng or

Pfaffia). Research from Russia and Czechoslovakia conducted over the last 30 years indicates that ecdysterones may possess some potentially beneficial physiological effects in insects and animals [135–140]. However, since most of the data on ecdysterones have

EGFR inhibitor been published in obscure journals, results are difficult to interpret. Wilborn and coworkers [141] gave resistance trained males 200 mg of 20-hydroxyecdysone per day during 8-weeks of resistance training. It was reported that the 20-hydroxyecdysone supplementation had no effect on fat free mass or anabolic/catabolic hormone status [141]. Due to the findings of this well controlled study in humans, ecdysterone supplementation at a dosage of 200 mg per day appears to be ineffective in terms of improving lean muscle mass. While future studies may find some ergogenic value of ecdysterones, it is our view that it is too early to tell whether phytoecdysteroids serve as a safe and effective nutritional supplement for athletes. Growth Hormone Releasing Peptides (GHRP) and Secretagogues Research has indicated that growth hormone releasing peptides (GHRP) and other non-peptide compounds (secretagogues) appear to help regulate growth hormone (GH) release [142, 143]. These observations have served as the basis for development of nutritionally-based GH stimulators (e.g., amino acids, pituitary peptides, “”pituitary substances”", Macuna pruriens, broad bean, alpha-GPC, etc).

5418 Å) The morphologies of the samples

were observed us

5418 Å). The morphologies of the samples

were observed using a field-emission scanning electron microscopy (FESEM, Hitachi, S-4800, Chiyoda-ku, Japan) and a high-resolution transmission electron microscope (HRTEM, Philips, Tecnai F20, Amsterdam, The Netherlands) at an accelerating voltage of 200 kV. The N2 adsorption/desorption isotherms were performed on a full-automatic physical and chemical adsorption apparatus (Micromeritics, TriStar learn more II 3020, www.selleckchem.com/products/pf-573228.html Norcross, GA, USA). Results and discussion Morphologies and catalytic activities of the as-synthesized magnetite and LFP-C Magnetite nanoparticles were widely studied as a Fenton-like catalyst due to the ferrous element, and we chose magnetite nanoparticles as a reference catalyst to evaluate the catalytic activity of LFP [9, 10]. In our experiment, magnetite nanoparticles were synthesized by co-precipitation of ferrous and ferric solutions with a molar ratio of Fe(III)/Fe(II) of 2:1 at 80°C [27]. The FESEM result indicates that the as-synthesized magnetite nanoparticles have a quite small average particle size of approximately 50 nm with a narrow size distribution (Figure 1a). In contrast, the as-received LFP-C has much bigger particle size than the as-synthesized

magnetite. The FESEM images of LFP-C shows that the commercial product of LFP-C has particle sizes from approximately 1 to approximately 4 μm with irregular morphologies (Figure 1b,c). The XRD analysis of MK-0457 in vivo LFP-C indicates that Enzalutamide in vitro the commercial LFP-C is composed of a triphylite crystal phase (JCPDS card no. 00-040-1499) (Figure 1d). Figure 1 FESEM images and XRD pattern. FESEM images of the as-synthesized magnetite nanoparticles

(a) and (b, c) the LFP-C particles. (d) XRD pattern of the LFP-C particles. In order to evaluate the potential of LFP-C as heterogeneous Fenton-like catalyst, oxidative degradation experiments of R6G with hydrogen peroxide were performed. The degradation behaviors of R6G and magnetite catalysts were shown in Figure 2a. The concentration of the catalysts and hydrogen peroxide were 3 g/L and and 6 mL/L, respectively, and the pH of R6G solution was 7. The degradation efficiency of approximately 53.7% was achieved with magnetite nanoparticles after 1 h reaction. However, LFP exhibited the efficiency of 86.9% after 1 h, which is much higher than that of magnetite nanoparticles. This is somewhat surprising because the particle size (a few μm) of LFP is much larger than that (approximately 50 nm) of magnetite nanoparticles: larger particles lead to smaller surface area for the interfacial catalytic reaction, thereby worse catalytic activity.

(B) Assessment of the intracellular uptake of liposomes by A549 t

(B) Assessment of the intracellular uptake of liposomes by A549 tumor cells using fluorescence microscopy. PEI-1, PEI-2, PEI-3, and PEI-4 represent PEI contents of 10%, 40%, 70%, and 100% (w/w total lipid) in liposomal formulations, respectively. Error bar represents mean ± SD (n = 3); *p < 0.001. selleck chemicals Cytotoxicity assay Prior to assessing the in vivo localization of DSPE-PEI-2 liposomes,

the in vitro cytotoxicity of free DOX (positive control), control liposomes (negative control), and DSPE-PEI-2 liposomes was measured in A549 cells using an MTT assay (Figure 4). Free DOX was found to be more cytotoxic to A549 cells than liposomal DOX due to the higher cellular uptake of free DOX by tumor cells via diffusion mechanisms [26, 27]. AZD6738 concentration Furthermore, DSPE-PEI-2 (cationic liposomes) also showed significantly higher cytotoxicity compared to control liposomes (p < 0.01). The lower cytotoxicity of control

liposomes may be a result of their low intracellular uptake. Cellular uptake of negatively charged control liposomes was inhibited as demonstrated by the measured zeta potential (Figure 2C) and AZD4547 ic50 by the flow cytometric study (Figure 3A). DSPE-PEI-2 liposomes, on the other hand, do interact electrostatically with A549 cell membranes, resulting in increased cytotoxicity of DOX-loaded DSPE-PEI liposomes. Figure 4 Cytotoxicity after liposomal DOX uptake in A549 cells. Error bar represents mean ± SD (n = 3); *p < 0.05. Tumor tissue localization of liposomes The possible role of cationic charge in enhancing the accumulation of liposomes in tumor tissue was assessed by fluorescence microscopy. Figure 5 shows the localization of free calcein, control liposomes (negative charge), and DSPE-PEI-2 liposomes (positive charge) in tumor-bearing mice after intratumoral injection. As shown in Figure 5, the image of DSPE-PEI-2 liposomes exhibits prominent fluorescence 10 min after

injection, and DSPE-PEI-2 liposomes at the tumor site show a longer retention time (240 min) than either control liposomes or free calcein. This result implies that the interaction of tumor vessels buy Ixazomib with cationic liposomes, specifically with DSPE-PEI-2 liposomes, may occur electrostatically between the negative cell surfaces and positive DSPE-PEI-2 liposomes. The observed effect is likely a result of the surface charge of the cationic liposomes that were not taken up by the tumor tissue, resulting in an enhancement of the localization efficiency of the cationic liposomes. Toward increasing the localization of payloads, extensive research investigation has been carried out into methods of modifying various carriers including ligand-labeled liposomes [28], hydrogel-based intratumoral injections [7], and magnetic-based carriers [29]. Although these investigations have yielded promising results, the additional formulations of such carrier systems require optimization.

Solutions with concentrations of 10-3 and 10-4 M for PAH and PSP

Solutions with concentrations of 10-3 and 10-4 M for PAH and PSP were prepared; in all cases, the mixtures had a 0.15 M NaCl to set the ionic strength. The pH

of both solutions was adjusted to 6.37 with NaOH or HCl [23]. The nanofilms were developed by either dipping the substrate into the 10-3/10-4 M solutions or by spraying the different solutions on the substrate. Therefore, up to four different growing conditions were studied (10-3 and 10-4 M of LbL dipping and 10-3 and 10-4 M of spray-assisted LbL). The anchoring layer of PEI led a positive superficial density charge onto XAV-939 research buy the fiber so that each bilayer shows the structure PSP/PAH. Films with 20, 40, 60, 80, and 100 bilayers were prepared in each growing configuration

in order to study the effects of the construction parameters. In the case of the dipping process, each construction cycle was performed by immersing the slide into the PSP solution for 2 min and then rising it in ultrapure water for 1 min; thereafter, it was dipped into the PAH mixture for 2 min and rinsed again for 1 min in ultrapure water. This selleck chemicals process was repeated as many times as required for the film. The steps were similar for the spray technique: the polymeric solutions and ultrapure water were sprayed for 10 s onto the slides. Both methods were automated by using a robotic arm (in the case of the dipping construction) and a spraying robot (both of them acquired from Nadetech selleck screening library Innovations S.L., Sarriguren, Spain). Characterization

The films prepared were characterized in order to study the growing process depending on the construction conditions. One of the key parameters, roughness, was measured by an atomic force microscope (AFM) Edoxaban (Veeco Innova, model 840-012-711; Veeco Instruments, Inc., Plainview, NJ, USA) in tapping mode; it was also used to register the thickness of the films by scratching the surface with a needle and scanning the cantilever perpendicularly to the scratch. For each sample, the AFM measurements were performed seven times in different zones to get the mean value and the standard deviation. AFM images were obtained by scanning 5 μm × 5 μm areas with 512 lines at a 0.1-Hz frequency. UV/Visible transmission spectra were recorded by a spectrometry transmission configuration, placing the glass slide under study in a holder between a white light source (HL2000; OceanOptics, Dunedin, FL, USA) and a spectrometer (USB2000XR1, OceanOptics). Finally, the contact angle was registered using a contact angle meter (KSV Instruments goniometer; Espoo, Finland) for each sample. Results and discussion As it was cited before, four sets of samples were prepared: 10-3 and 10-4 M of LbL dipping as well as 10-3 and 10-4 M of spray-assisted LbL. In each set, five slides were coated with different number of bilayers (20, 40, 60, 80, and 100).

cereus and GerP proteins of B cereus and B subtilis which

cereus and GerP proteins of B. cereus and B. subtilis which

are also required for proper assembly of the spore coat [71, 72]. No homolog for such genes was identified in D. hafniense DCB-2. Selleckchem IBET762 Specific degradation of the spore’s peptidoglycan cortex is mediated by two enzymes, CwlJ and SleB, which require muramic-δ-lactam in peptidoglycan for their action [73, 74]. Homologous genes encoding CwlJ and SleB were identified in the genome of D. hafniense DCB-2 along with a gene coding for a membrane protein YpeB which is required for SleB insertion into the spore [74, 75]. Despite progress in the study of spore germination, little is known about the learn more function of the receptors, signal transduction, and the mechanism of spore-coat breakdown [69, 70]. The germination system of D. hafniense DCB-2, which lacks some important gene homologs, may provide clues for understanding the missing links in other well-studied systems. Biofilm formation D. hafniense DCB-2 was showed to form biofilm in PCP-acclimated bioreactors [55, 76] and could also form biofilm on bead matrices under pyruvate fermentative conditions, and even more rapidly under Fe(III)-reducing conditions [25]. Under the identical Fe(III)-reducing conditions but with no added beads, cells expressed genes for type IV pilus biosynthesis (Dhaf_3547-3556) and genes

involved in the gluconeogenesis pathway including the fructose-1,6-bisphosphatase gene (Dhaf_4837). Development of microbial biofilm C646 mw encompasses attachment, microcolony formation, biofilm maturation and dispersion, a series of processes mediated by flagellae, type oxyclozanide IV pili, DNA, and exopolysaccharides [77, 78]. An increased production of type IV pili and exopolysaccharides would appear to contribute to faster establishment of biofilm under the Fe(III)-respiring conditions. Microcompartments A variety of bacteria utilize ethanolamine, a compound readily available from the degradation of cell membranes, as a source of carbon and/or nitrogen [79]. This process, which occurs within proteinaceous

organelles referred to as microcompartments or metabolosomes, involves cleaving ethanolamine into acetaldehyde and ammonia, and a subsequent conversion of acetaldehyde into acetyl-CoA [80]. In Salmonella typhimurium, 17 genes involved in the ethanolamine utilization constitute a eut operon [80]. All these genes were also identified in the genome of D. hafniense DCB-2 but were scattered among four operons (Dhaf_ 0363-0355, Dhaf_4859-4865, Dhaf_4890-4903, and Dhaf_4904-4908). Two genes (eutBC) encoding ethanolamine ammonia lyase which converts ethanolamine to acetaldehyde and ammonia were present in one operon (Dhaf_4859-4865), and the eutE gene encoding acetaldehyde dehydrogenase which forms acetyl-CoA was found as copies in the other three operons.

pestis whole-genome cDNA microarray as described previously [12]

pestis whole-genome cDNA microarray as described previously [12]. Briefly, RNA samples were isolated Batimastat solubility dmso from four individual bacterial cultures, as biological replicates, for each strain. Total cellular RNA was isolated and then used to synthesize cDNA in the presence of aminoallyl-dUTP, genome directed primers (GDPs) and random hexamer primers [16]. The aminoallyl modified cDNA was then labelled with Cy5 or Cy3 dye. Microarray slides spotted in duplicate with 4005 PCR amplicons, representing about 95% of the non-redundant annotated genes of Y. pestis CO92 [17] and 91001 [18], were used for probe

EPZ015666 purchase hybridization. The dual-fluorescently (Cy3 or Cy5 dye) labeled cDNA probes, for which the incorporated dye was reversed, were synthesized from the RNA samples

of the four biological replicates, and then hybridized to four separated microarray slides, respectively. The scanning images were processed www.selleckchem.com/products/sbi-0206965.html and the data was further analyzed by using GenePix Pro 4.1 software (Axon Instruments) combined with Microsoft Excel software. The normalized log2 ratio of the Δzur/WT signal for each spot was recorded. The averaged log2 ratio for each gene was finally calculated. Significant changes of gene expression were identified through the Significance Analysis of Microarrays (SAM) software (a Delta value of 1.397 and an estimated False Discovery Rate of 0%) [19]. Computational analysis of Zur binding sites The 500 bp promoter regions upstream the start codon of each Zur-dependent genes as revealed by cDNA microarray was retrieved with the ‘retrieve-seq’ program [20]. A position count matrix was built from the predicted Zur binding sites

in γ-Proteobacteria by using the matrices-consensus tool [20], and displayed by the WebLogo program to generate a sequence logo [21]. Following this, the matrices-paster tool [20] was used to match the Zur position count matrix within the above promoter regions. Real-time RT-PCR Gene-specific primers were designed to produce a 150 to 200 bp amplicon for each gene (see Additional file 2 for primer sequences). The contaminated DNA in RNA samples was further removed by using the Amibion’s DNA-free™ before Kit. cDNAs were generated by using 5 μg of RNA and 3 μg of random hexamer primers. Using three independent cultures and RNA preparations, real-time RT-PCR was performed in triplicate as described previously through the LightCycler system (Roche) together with the SYBR Green master mix [22, 23]. On the basis of the standard curves of 16S rRNA expression, the relative mRNA level was determined by calculating the threshold cycle (ΔCt) of each gene by the classic ΔCt method. Negative controls were performed by using ‘cDNA’ generated without reverse transcriptase as templates. Reactions containing primer pairs without template were also included as blank controls. The 16S rRNA gene was used as an internal control to normalize all the other genes.