Nature 1970, 227:680–685 PubMedCrossRef 38 Bradford MM: A rapid

Nature 1970, 227:680–685.PubMedCrossRef 38. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248–254.PubMedCrossRef 39. Kraak MN, Kessler B, Witholt VS-4718 purchase B: In vitro activities of granule-bound poly[( R )-3-hydroxyalkanoate] polymerase C1 of Pseudomonas oleovorans : development of an activity test for medium-chain-length-poly(3-hydroxyalkanoate) polymerases. Eur J Biochem 1997, 250:432–439.PubMedCrossRef 40. García E, Rojo JM, García P, Ronda C, Lopez R, Tomasz A: Preparation of antiserum against the Pneumococcal autolysin – inhibition of

autolysin find protocol activity and some autolytic processes by the

antibody. FEMS microbiol Lett 1982, 14:133–136. Competing interests The authors declare that they have no competing interests. Authors’ contributions QR and GdR performed the laboratory experiments and drafted the manuscript. BW advised the experimental design and revised the drafted manuscript. MZ and LTM helped in preparing of the manuscript. All authors read and approved the final manuscript.”
“Background Pseudomonas aeruginosa is a Gram-negative bacterium that rarely causes serious infections in healthy individuals. It is, however, the prevalent opportunist pathogen encountered in nosocomial infections and the major etiologic agent responsible for the morbidity, clinical deterioration and early mortality associated with patients suffering from cystic fibrosis (CF)

[1–5]. A plethora of virulence factors expressed by P. aeruginosa Loperamide is associated with acute and chronic infections [6]. Perhaps the most dramatic change that characterizes P. aeruginosa chronic infections is the transformation from a non-mucoid to a mucoid phenotype [7]. This is associated with an overproduction of alginate, which favors selleck compound biofilm formation and an increased antibiotic resistance [8]. Chronic pseudomonal infections are thought to be virtually impossible to eradicate and the current strategy in the management of CF patients, which become infected in their early childhood, is to prevent or retard progression to chronic infection by treating P. aeruginosa infections with conventional antibiotic therapy as soon as they appear [9, 10]. In this era of increased antibiotic resistance, the development of novel antimicrobial agents is urgently needed. In the past decade, gene-encoded short positively charged peptides, collectively known as antimicrobial peptides (AMP), have attracted much attention because of their broad antimicrobial activities and their potential use as therapeutics [11–18]. AMP are characterized by their short length (12-50 aa), polycationic (at least +2 net charge as Lys or Arg) and, usually, amphipathic characters.

Comments are closed.