Therefore their role will not be further discussed Suffice here

Therefore their role will not be further discussed. Suffice here to remember that the antifracture efficacy is better for a daily intake of 1,000–1,200 mg

calcium and 800–880 IU vitamin D [19]. Excesses in sodium intake have a negative impact on calcium balance by increasing the urinary calcium excretion. There is, however, an interindividual differences in salt sensitivity. Obligatory urinary calcium losses are correlated selleck products with urinary sodium excretion [20]. For every 100 mmol of sodium excreted, approximately 1 mmol loss of urinary calcium is observed [20]. It has been suggested, however, that enough calcium in the diet could overcome the salt deleterious effect. There could be 2-fold differences in sodium-induced calciuria with low and high

calcium intakes. In a recent study, as compared with a low salt diet (3.9 g/day), a high salt intake (11.2 g/day), corresponding to upper intakes in postmenopausal women on a Western-style INK 128 clinical trial diet provoked a significant increase in urinary calcium excretion (+36%). The negative bone calcium balance was not counteracted by a high calcium diet (1,284 mg/day). Paradoxically, the negative bone calcium balance induced by both high and low salt diets was less marked with a low calcium intake. There was a significant increase in the levels of parathyroid hormone (+11.4%) and of urinary N-telopeptide (+19%) in response to the high sodium diet [21]. In previous studies such as the Framingham

study, in a 12-year follow-up, the risk of hip fracture over each 2-year period was found significantly increased by the consumption of ≥2.5 units of caffeine per day (one cup of coffee = one unit of caffeine, and one cup of tea = 0.5 unit of caffeine) [22]. There is a theoretical explanation to Obatoclax Mesylate (GX15-070) the fragilization of bone by caffeine intake: caffeine increases urinary and faecal calcium losses and may provoke a negative calcium balance in presence of a low calcium diet [23]. Caffeine at a dose of 330 mg/day (i.e. four cups (600 ml)) possibly might be associated with a modestly increased risk of osteoporotic fractures (Hazards ratio, 1.20 (95% confidence interval (CI), 1.07–1.35)), compared with a low caffeine intake (<200 mg/day) [24]. However, this deleterious effect of caffeine seems to be offset by increasing calcium intake (by 40 mg calcium for every 177.5 ml serving of caffeine-containing coffee, i.e. ∼1 cup) [25]. This positive calcium effect greatly minimizes a potential role for caffeine in BMD maintenance and bone strength. No study has been done with decaffeinated coffee. High phosphorus intakes are associated with lower levels of calcium urinary excretion, but a slightly higher intestinal calcium excretion. These opposite effects neutralize themselves and does not seem to negatively impact on calcium balance [26, 27]. The role of protein intake remains controversial in the development of osteoporosis.

Comments are closed.