Several techniques have been reported for the synthesis of materi

Several techniques have been reported for the synthesis of materials at nanoscale [2, 3], but among these, the template-based Selleck AZD5582 method is a very simple and facile approach for obtaining dense metallic arrays with different geometries considered, such as planar and cylindrical nanostructures [4]. Chemical template-based methods combined with high-yield electrochemical deposition techniques have been recently employed to synthesize ordered arrays of magnetic nanowires and nanotubes [5, 6]. The synthesis of nanostructured see more materials by means of electrochemical

deposition into the nanopores of anodic aluminum oxide (AAO) membranes has attracted during the last decades a huge scientific interest due to the outstanding features exhibited by these templates such as low cost, large self-ordering degree of nanopores, high reproducibility, and precise control over their morphological characteristics [7]. These fabrication techniques based

on combined bottom-up strategies allow fabricating magnetic nanoentities by electrochemically filling the AAO pores, and the amount of electrodeposited material can be easily controlled through the charge recorded during the nanowire growth. This makes possible the preparation of highly ordered nanostructures with specific dimensions and properties [8, 9]. The peculiar characteristics of hard anodic aluminum oxide (H-AAO) membranes, mainly the low processing time, large interpore distances, Mocetinostat cost and a broad window of self-ordering conditions, have demonstrated at the same time to be advantageous for their use as templates in the fabrication of highly ordered nanowire arrays [10]. The high nanoporous oxide growth rate achieved by means of hard anodization (HA) method (about 50 μm/h, 20 times faster than the standard Anacetrapib mild anodization), together with the fast development of a hexagonal highly ordered nanoporous arrangement, allows us to produce H-AAO membranes with

reproducible geometrical parameters in a few hours by only performing a single anodization step [11]. Increasing interest has been focused on the study of ferromagnetic/non-magnetic heterogeneous nanowire arrays [12, 13], while only few works are devoted to heterogeneous ferromagnetic binary and segmented (barcode) nanowires [14, 15]. Co-Ni alloy nanowires are outstanding magnetic materials that can exhibit both either a soft or hard magnetic behavior depending on the Co/Ni ratio in the alloy [16–18]. The combination of low magnetocrystalline anisotropy of face-centered cubic (fcc) Ni and high magnetocrystalline anisotropy of hexagonal close-packed (hcp) Co, together with the high solubility of Co atoms in the crystalline lattice of Ni and vice versa for a wide range of relative concentrations [18], allows for the design of a material composition with tunable magnetic properties.

Comments are closed.