(Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e63-

(Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e63-e69)”
“P>The COP9 signalosome (CSN) is a multi-protein complex that regulates the activities of cullin-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate buy BIIB057 proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound-responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over-expression. In contrast, expression of pathogenesis-related

genes was increased in a stimulus-independent manner in these plants. The reduced wound response in CSN-silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these

plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN-silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA-dependent plant defense responses.”
“P>Meiosis is essential for eukaryotic sexual reproduction, with two consecutive rounds of nuclear divisions, allowing production of haploid gametes. Information regarding the meiotic transcriptome should provide valuable clues about check details global MK-4827 expression patterns and detailed gene activities. Here we used RNA sequencing to explore the transcriptome of a single plant cell type, the Arabidopsis male meiocyte,

detecting the expression of approximately 20 000 genes. Transcription of introns of > 400 genes was observed, suggesting previously unannotated exons. More than 800 genes may be preferentially expressed in meiocytes, including known meiotic genes. Of the 3378 Pfam gene families in the Arabidopsis genome, 3265 matched meiocyte-expressed genes, and 18 gene families were over-represented in male meiocytes, including transcription factor and other regulatory gene families. Expression was detected for many genes thought to encode meiosis-related proteins, including MutS homologs (MSHs), kinesins and ATPases. We identified more than 1000 orthologous gene clusters that are also expressed in meiotic cells of mouse and fission yeast, including 503 single-copy genes across the three organisms, with a greater number of gene clusters shared between Arabidopsis and mouse than either share with yeast. Interestingly, approximately 5% transposable element genes were apparently transcribed in male meiocytes, with a positive correlation to the transcription of neighboring genes. In summary, our RNA-Seq transcriptome data provide an overview of gene expression in male meiocytes and invaluable information for future functional studies.”
“Objective.

Comments are closed.