In Random Walk with k-Memory [RWM(k)] [15], when a node receives

In Random Walk with k-Memory [RWM(k)] [15], when a node receives the search packet, it avoids recently visited k neighbors and randomly selects a neighbor from the remaining neighbors and forwards the search packet to it. If there are selleckbio no unvisited neighbors, one of neighbors will be selected randomly. RWM(k) decreases the overhead compared to SRW by a constant factor, but does not change the basic behavior of SRW. Rachuri et al. [21] proposed three protocols viz., Several Short Random Walks (SSRW) search, Random Walk with Level Biased Jumps (RWLBJ) search, and Level Biased Random Walk (LBRW) search. The proposed protocols use a combination of random walk and Level Biased Walk (LBW) to search the target information. The basic idea of SSRW is to initiate several short random walks, one after the other until a target node is found.
RWLBJ is essentially a random walk with periodic jumps based on LBW. In the random step phase, a fixed/variable number of steps are taken by the walk based on SRW. In the jump phase, a fixed/variable number of steps are taken by the walk based on LBW. The basic principle of LBRW is that, the search packet starts at the sink node and traverses in a random path to one of circumference nodes and traverses back to the sink node in a random path. All three random walks have better performance than SRW. Silva et al. [3] proposed Non-Revisiting Random Walks (NRWs), which avoids re-visiting neighbors by selecting the next hop randomly among neighbors with the minimum number of visits.
Non-revisiting random walks significantly improve upon simple random walks in terms of querying cost and load balancing, and the push-pull mechanism is
Recently, the generation of spatially well-defined, three dimensional (3D) microstructures for whole-cell sensing Entinostat system have attracted interest in the development of portable bacterial whole-cell biosensing download the handbook systems, high-throughput cellular analysis as well as in fundamental studies of cell biology [1�C3]. To achieve this goal, three major aspects should be considered: (a) selection of biocompatible materials to construct 3D microstructures; (b) fabrication methods to control the size and uniform shape of the 3D microstructures; (c) polymerization methods to produce hydrogels [4�C6]. In the aspect of selection of biocompatible materials, different types of biocompatible materials have been used over the past few decades. Among the various types of biocompatible materials, hydrogels have been attractive to biochemical, biomedical and biomaterial researchers because of their non-toxic, robustness and inertness properties.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>