“
“High-throughput generation of antibodies for proteome research
has become feasible by using antibody gene libraries and in vitro selection methods like phage display. Typically monovalent antibody fragments like scFv, Fab or scFab are obtained by this technology. see more To mimic the IgG molecule and gain avidity, resulting in stronger binding, multimerization domains can be fused to antibody fragments. Here we systematically analyzed different multimerization domains in respect to three key parameters, crucial for the high-throughput generation of binders. (i) The compatibility to be displayed on phage (assessed for at least three different antibody formats, scFv, Fab and scFab) in combination with five different multimerization domains; (ii) production yields and (iii) oligomerization properties were analyzed for three different scFv fragments. We found that the use of a biotin acceptor domain in combination with an in vivo biotinylation system performed best concerning the key parameters and thus would be a useful tool to generate multimeric antibody complexes on
demand from phage display selected antibody fragments with the least effort.”
“Of the five herpes simplex LXH254 in vitro virus type 1 immediate early (IE) proteins, the least is known about the function of ICP22 during productive infection and latency. Research characterizing the physical and functional properties of the protein has been limited because ICP22 has proven to be difficult to express in transient assays. In addition, genetic analysis of ICP22 has been complicated by the fact that the C terminus of ICP22 AZD1480 nmr is expressed as a discrete protein product. In order to characterize properties of mutant and wild-type ICP22, we developed a transient expression system. We found that ICP22 can be expressed at detectable levels when placed under the control of the cytomegalovirus IE promoter, confirming recent observations by K. A. Fraser and S. A. Rice (J. Virol.
81: 5091-5101, 2007). We extended this analysis to show that ICP22 can also be expressed from its own promoter in the presence of other viral factors, either by coexpression with ICP0 or by infection with an ICP22 null virus. Notably, infection of cells transfected with an ICP22 expression vector yielded ICP22 protein that was modified in a manner similar to that of ICP22 protein detected in wild-type-nfected cells. We go on to demonstrate that the failure of ICP22 protein to be expressed in transiently transfected cells was not due to inactivity of the ICP22 promoter, but rather to the ability of ICP22 to inhibit expression of reporter gene activity, including its own, in transient assays.