(c) 2008 Elsevier Inc. LXH254 All rights reserved”
“Through recent advances in nanotechnology and molecular engineering,
biomimetics – the development of synthetic systems that imitate biological structures and processes is now emerging at the nanoscale. In this review, we explore biomimetic nanopores and nanochannels. Biological systems are full of nano-scale channels and pores that inspire us to devise artificial pores that demonstrate molecular selectivity or other functional advantages. Moreover, with a biomimetic approach, we can also study biological pores, through bottom-up engineering approaches whereby constituent components can be investigated outside the complex cellular environment.”
“The paramyxovirus F protein promotes fusion of the viral and cell membranes for virus entry, as well as cell-cell fusion for syncytium formation. Most paramyxovirus F proteins are triggered at neutral pH to initiate membrane fusion. Previous studies, however, demonstrated that human metapneumovirus
(hMPV) F proteins are triggered at neutral or acidic pH in transfected cells, depending on the strain origin of the F sequences (S. Herfst et al., J. Virol. 82:8891-8895, 2008). We now report an extensive mutational analysis which identifies four variable residues (294, 296, 396, and 404) as the main determinants of the different syncytial phenotypes found among hMPV F proteins. These residues lie near Selleckchem G418 two conserved histidines (H368 and H435) in a three-dimensional (3D) model of the PDK4 pretriggered hMPV F trimer. Mutagenesis of H368 and H435 indicates that protonation of these histidines (particularly His435) is a key event to destabilize the hMPV F proteins that require low pH for cell-cell fusion. The syncytial phenotypes were reproduced in cells infected with the corresponding hMPV strains. However, the low-pH dependency for syncytium formation could not be related with a virus entry pathway dependent on an acidic environment. It is postulated that low pH may be acting for some hMPV strains as certain destabilizing mutations found in unusual strains of other paramyxoviruses. In
any case, the results presented here and those reported by Schowalter et al. (J. Virol. 83:1511-1522, 2009) highlight the relevance of certain residues in the linker region and domain II of the pretriggered hMPV F protein for the process of membrane fusion.”
“Suppression of inhibition of axonal outgrowth and promotion of axonal protection from progressive axonal degeneration are both therapeutic strategies for the treatment of neuronal diseases characterized by axonal loss. Myelin-associated inhibitors (MAIs) have been shown to suppress axonal outgrowth, but a specific MAI, myelin-associated glycoprotein (MAG), has also been shown to protect neurons from axonal degeneration through activation of the small GTPase protein RhoA.